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Abstract—3-Methylsulfanyl-2-arylazo-3-(pyrrolidin-1-yl)acrylonitriles do not enter into [4+2]-cycloaddition reactions with male-
imides to form the expected pyrrolo-pyridazines. Instead the formation of novel pyrrolo-pyridazines of type 4 takes place via a for-
mal [3+2]-cycloaddition of initially formed pyrrolidine-derived azomethine ylides 7. The mechanism leading to the final product is
discussed.
� 2006 Elsevier Ltd. All rights reserved.
[4+2]-Cycloaddition reactions of 1,2-diazadienes repre-
sent an efficient method to prepare pyridazines.1–4 In
turn, 1,2-diazadienes can be synthesized either by base
catalyzed dehydrohalogenation of a-halomethyl-hydra-
zones1–5 or by oxidation of hydrazones.6–8 1,2-Diazadi-
enes are rather reactive and unstable compounds, and
therefore, besides their main reaction course, side reac-
tions may take place leading to a mixture of com-
pounds.4 We have found that the alkylation reaction
of 2-arylhydrazono-3-(pyrrolidin-1-yl)-3-thioketopropi-
onitriles occurs on the sulfur atom of the thioamide
group to form rather stable 3-methylsulfanyl-2-aryl-
azo-3-(pyrrolidin-1-yl)acrylonitriles. We envisaged that
these compounds would undergo a [4+2]-cycloaddition
reaction with maleimides to afford pyrrolo-pyridazines
of type 4 which would be of interest in medicinal chem-
istry, as interesting biological properties were recently
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found in a series of fused pyridazines.3 However, when
1,2-diazadienes 1a–d were heated at reflux with five
equivalents of maleimides 2a,b in benzene for 5–10 h so-
lid products were found in good yields (55–80%) but
these were not the expected product 4 (see Scheme 1).

The IR, mass, 1H and 13C NMR spectra of the products
are in good accordance with the structures of the tri-
cyclic pyrrolizines 5 and 6. The IR spectra of all the
compounds exhibited an absorption band correspond-
ing to a cyano group at 2200 cm�1. Compounds 5 and
6 were isolated as inseparable mixtures of double bond
isomers (Scheme 2). Indeed, double signals were present
in the NMR spectra. Typical resonances included two
doublets at 4.7–5.10 ppm corresponding to the 3a pro-
ton (3J3a–8b = 8.5–8.8 Hz) and two doublet of doublets
(3J8b–3a = 8.5–8.8 Hz; 3J8b–8a = 10.0–10.3 Hz) for the
8b proton. The number of protons in the pyrrolidine
fragment has changed from eight to seven and one of
them is shifted 0.6–0.8 ppm downfield in comparison
with N–CH2 signals in the starting compound. We
assigned the all-cis-H structure by analogy with similar
tricyclic compounds reported by Viehe et al.9,10 which
have coupling constants in the same range.
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Scheme 2. Selected NOESY and COSY correlations observed in 5 and 6.

1854 T. G. Deryabina et al. / Tetrahedron Letters 47 (2006) 1853–1855
The assignment of the signals in the 13C NMR spectrum
were made on the basis of DEPT, 2D COSY, HSQC,
HMBC, and H–H NOESY experiments (Scheme 2). In
6b, the presence of interactions of an aromatic proton
with the 3a proton in the E-isomer and the aromatic
proton with the proton at position 6 in the Z-isomer
were found in the H–H NOESY spectra. The interaction
of C4 and C4 0 with the 3a proton was confirmed by 2D
COSY experiments. The signal due to C4 0 were apparent
in the 102.8 (E-isomer) and 103.9 ppm (Z-isomer) as two
doublets with coupling constants 3J = 1.3 and 0.6 Hz,11

and the signal for C4 occurred at 158.9 (E-isomer) and
154.3 ppm (Z-isomer) with H3a of 2J = 6.4 and 3.4 Hz.

All our attempts to separate the Z- and E-isomers failed.
We propose that these isomers exist in equilibrium and
transform into each other via rotation around the C4–
C4 0 double bond, facilitated by a reversible shift of H-
3a to the azo group to form the hydrazono function. In-
deed, measurement of the 1H NMR spectrum at a higher
temperature showed that the proton signals approach
each other with increasing temperature. The coalescence
of the H-3a signals was achieved at about 120 �C.

We suggest the following mechanism for the interaction
of compounds 1 with maleimides 2. We propose that the
course of the reaction involves the formation of an
azomethine ylide 7 followed by [3+2]-cycloaddition to
the double bond of the maleimide to afford 8 and then
the final compound after loss of MeSH. The proton shift
required to form 7 is aided by the push-pull electronic
character present in compound 1.

It should be noted that Viehe9,10 reported the genera-
tion of pyrrolidine-derived azomethine ylides contain-
ing a methylthio group at the negatively charged
atom by reaction of a thioamidinium salt with a strong
base at low temperature. The same author showed that
the generation of an azomethine ylide is possible via
acid catalyzed elimination of methylthiol from a trifluo-
romethyl thioaminal by heating at reflux in toluene.
However, the conditions for the generation of azome-
thine ylides used in our method are very different. No
catalyst is required, and the generation of the azome-
thine ylides takes place by heating thioimidate 1 in benz-
ene at reflux.

Thus, the thioimidates of arylazoacrylonitriles are
shown to be good synthons for the generation of azome-
thine ylides under mild conditions. The heterocycles 5
and 6 synthesized in this work are the first examples of
4-methylene pyrrolizidines.
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